This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_H"
#include <bits/stdc++.h> // clang-format off
using Int = long long;
#define REP_(i, a_, b_, a, b, ...) for (Int i = (a), lim##i = (b); i < lim##i; i++)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(v) std::begin(v), std::end(v)
struct SetupIO { SetupIO() { std::cin.tie(nullptr), std::ios::sync_with_stdio(false), std::cout << std::fixed << std::setprecision(13); } } setup_io;
#ifndef dump
#define dump(...)
#endif // clang-format on
/**
* author: knshnb
* created: Wed Sep 30 01:58:03 JST 2020
**/
#define CALL_FROM_TEST
#include "../../src/DataStructure/LazySegmentTreeACL.hpp"
#undef CALL_FROM_TEST
signed main() {
Int n, Q;
std::cin >> n >> Q;
min_add::segtree seg{std::vector<Int>(n)};
REP(q, Q) {
Int t, l, r;
std::cin >> t >> l >> r, r++;
if (t == 0) {
Int x;
std::cin >> x;
seg.apply(l, r, x);
} else {
std::cout << seg.prod(l, r) << "\n";
}
}
}
#line 1 "test/aoj/DSL_2_H_.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_H"
#include <bits/stdc++.h> // clang-format off
using Int = long long;
#define REP_(i, a_, b_, a, b, ...) for (Int i = (a), lim##i = (b); i < lim##i; i++)
#define REP(i, ...) REP_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define ALL(v) std::begin(v), std::end(v)
struct SetupIO { SetupIO() { std::cin.tie(nullptr), std::ios::sync_with_stdio(false), std::cout << std::fixed << std::setprecision(13); } } setup_io;
#ifndef dump
#define dump(...)
#endif // clang-format on
/**
* author: knshnb
* created: Wed Sep 30 01:58:03 JST 2020
**/
#define CALL_FROM_TEST
#line 2 "src/DataStructure/LazySegmentTreeACL.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#line 38 "src/DataStructure/LazySegmentTreeACL.hpp"
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
namespace min_update {
using T = Int;
using S = T;
S op(S x, S y) { return std::min<S>(x, y); }
S e() { return std::numeric_limits<S>::max(); }
using F = T;
constexpr F dummy = std::numeric_limits<F>::min();
S mapping(F f, S x) { return f == dummy ? x : f; }
F composition(F f, F g) { return f == dummy ? g : f; }
F id() { return dummy; }
using segtree = atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>;
}; // namespace min_update
namespace sum_add {
using T = Int;
struct S {
T sum;
int len;
};
S op(S x, S y) { return {x.sum + y.sum, x.len + y.len}; }
S e() { return {0, 0}; }
using F = T;
S mapping(F f, S x) { return {x.sum + f * x.len, x.len}; }
F composition(F f, F g) { return f + g; }
F id() { return 0; }
using segtree = atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>;
} // namespace sum_add
namespace min_add {
using T = Int;
using S = T;
S op(S x, S y) { return std::min(x, y); }
S e() { return std::numeric_limits<S>::max() / 2; }
using F = T;
S mapping(F f, S x) { return x + f; }
F composition(F f, F g) { return f + g; }
F id() { return 0; }
using segtree = atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>;
} // namespace min_add
namespace sum_update {
using T = Int;
struct S {
T sum;
int len;
};
S op(S x, S y) { return {x.sum + y.sum, x.len + y.len}; }
S e() { return {0, 0}; }
using F = T;
constexpr F dummy = std::numeric_limits<F>::min();
S mapping(F f, S x) { return f == dummy ? x : S{f * x.len, x.len}; }
F composition(F f, F g) { return f == dummy ? g : f; }
F id() { return dummy; }
using segtree = atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>;
} // namespace sum_update
#line 20 "test/aoj/DSL_2_H_.test.cpp"
#undef CALL_FROM_TEST
signed main() {
Int n, Q;
std::cin >> n >> Q;
min_add::segtree seg{std::vector<Int>(n)};
REP(q, Q) {
Int t, l, r;
std::cin >> t >> l >> r, r++;
if (t == 0) {
Int x;
std::cin >> x;
seg.apply(l, r, x);
} else {
std::cout << seg.prod(l, r) << "\n";
}
}
}